Afiliacja:
Wydział Matematyki, Informatyki i Mechaniki, Instytut matematyki Stosowanej i Mechaniki, Uniwersytet Warszawski
E-mail:
lp.ud1732205267e.wum1732205267im@ak1732205267inom1732205267
www:
http://www.mimuw.edu.pl/~monika/
Uprawiana tematyka naukowa i możliwe obszary współpracy interdyscyplinarnej:
Równania różniczkowe; automaty komórkowe; modelowania zjawisk biologicznych, medycznych i socjologicznych; matematyka przemysłowa
Najważniejsze publikacje:
- M. Bodnar, U.Foryś, M.J. Piotrowska: ‚Logistic type equations with discrete delay and quasi-periodic suppression rate’, 26 (6), 2013, 607—611, Applied Mathematics Letters;
- M. Bodnar, M.J. Piotrowska, U.Foryś: ‚Existence and stability of oscillating solutions for a class of delay differential equations’, 14 (3), 2013, 1780–1794, Nonlinear Analysis Series B: Real World Applications;
- S.D. Angus, M.J. Piotrowska: ‚A numerical model of EMT6/Ro spheroid dynamics under irradiation: calibration & estimation of the underlying irradiation-induced cell survival probability’, 320, 2013, 23—32, Journal of Theoretical Biology;
- M.J. Piotrowska, U.Foryś, M. Bodnar, J. Poleszczuk: ‚A simple model of carcinogenic mutations with time delay and diffusion’, 10(3), 2013, 861-872, Mathematical Biosciences and Engineering;
- M. Bodnar, M.J. Piotrowska, U.Foryś: ‚Gompertz model with delays and treatment: mathematical analysis’, 10(3), 2013, 551-563, Mathematical Biosciences and Engineering;
- M.J. Piotrowska, M. Bodnar, J. Poleszczuk, U.Foryś: ‚Mathematical modelling of immune reaction against gliomas: sensitivity analysis and influence of delays’, 14 (3), 2013, 1601–1620, Nonlinear Analysis Series B: Real World Applications;
- M. Bodnar, M.J. Piotrowska, U.Foryś, E. Nizińska : ‚Model of tumour angiogenesis – analysis of stability with respect to delays’, 10(1), 2013, 19–35, Mathematical Biosciences and Engineering;
- M.J. Piotrowska, U. Foryś: ‚The nature of Hopf bifurcation for the Gompertz model with delays’, Mathematical and Computer Modelling, 54, 2011, 2183-2198;
- M.J. Piotrowska, U. Foryś: ‚Analysis of the Hopf bifurcation for the Family of Angiogenesis Models’, Journal of Mathematical Analysis and Applications, 382, 2011, 180–203;
- M.J. Piotrowska, S.D. Angus: ‚A Quantitative Cellular Automaton Model of in vitro Multicellular Spheroid Tumour Growth’, Journal of Theoretical Biology, 258, 2009, 165-178;
- M.J. Piotrowska: ‚Hopf Bifurcation in a Solid Avascular Tumour Growth Model with two Discrete Delays’ Special issue: Towards a Mathematical Description of Cancer: Analytical, Numerical and Modelling Aspects, Mathematical and Computer Modelling, 47, 2008, 597-603;
- M.J. Piotrowska: ‚A Remark on the ODE with two Discrete Delays’, Journal of Mathematical Analysis and Applications, 329, 2007, 664-676;