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STABILITY OF SOME SIMPLE MODELS OF TURBULENCE

TOMASZ SZAREK

ABSTRACT. We present stability results on Markov semigroups generated by simplified stochastic
models appearing in hydrodynamics. We consider the Goy and the Sabra shell model with degen-
erate noise. The models capture some essential statistical properties of turbulent flows. Using the
lower bound technique developed in [2, 13] we prove the existence of an invariant measure and its
stability.

1. INTRODUCTION

The paper is aimed at proving asymptotic stability of Markov processes generated by stochastic
hydrodynamical models (the Goy and the Sabra shell model) which are very popular examples of
simplified phenomenological models of turbulence. Although they are not based on conservation
laws, they capture some essential statistical properties and features of turbulent flows like the
energy and the enstrophy cascade and the power law decay of the structure functions in some
range of wave numbers, the inertial range. We refer the reader to [1,5,9,10,20] and the references
therein and to [4, 6, 8] for some rigorous results.

We are interested in a Wiener noise disturbance with only finitely many nontrivial modes and
then we prove the e-process property. It is possible that the simillar results may be obtained using
coupling methods (see for instance [3,11,14]). Here we make use of general results on stability of
processes satisfying the so-called e–property (see [14, 15]) developed by lower bound technique.
In particular, it is known that any Markov process with the e–property which is averagely bounded
and with positive probability enters into any neighbourhood of a fixed point is asymptotically
stable. In particular, it admits a unique invariant measure. The proof of this result was given in [2].
The most difficult part of proving that the models under consideration satisfy sufficient conditions
of our criterion is the proof of the e–property. For its verification we use the Malliavin calculus
developed in [12]. The main result of the paper answers to the conjecture posed by Barbato et al.
(see [4]) who anticipated that in the case when the number of modes to which we add the noise is
large enough, it would be possible to prove the uniqueness of an invariant measure.
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The paper is organized as follows. In section 2, we introduce the concepts of e-property, av-
eragely bounded and concentrating at a point. We also formulate the results about asymptotic
stability for Markov processes. In Section 3, we introduce the GOY and the Sabra model and give
general results about their well posedness. In Section 4, we apply the results of Section 2 to the
shell models and prove the e-property, the average boundedness and the concentrating property.
Then we state our main result for the uniqueness of the invariant measure for the stochastic shell
model with a degenerate noise.

2. CRITERION ON STABILITY

Let (X, ρ) be a Polish space. By Bb(X) we denote the space of all bounded Borel–measurable
functions equipped with the supremum norm. Let (Pt)t≥0 be the Markovian semigroup defined on
Bb(X). For each t ≥ 0 we have Pt1X = 1X and Ptψ ≥ 0 if ψ ≥ 0. Throughout this paper we
shall assume that the semigroup is Feller, i.e. Pt(Cb(X)) ⊂ Cb(X) for all t > 0. Here and in the
sequel Cb(X) is the subspace of all bounded continuous functions with the supremum norm ‖ ·‖∞.
By Lb(X) we will denote the subspace of all bounded Lipschitz functions. We shall also assume
that (Pt)t≥0 is stochastically continuous, which implies that limt→0+ Ptψ(x) = ψ(x) for all x ∈ X
and ψ ∈ Cb(X).

LetM1 stand for the space of all Borel probability measures on X . Denote byMW
1 , W ⊂ X ,

the subspace of all Borel probability measures supported in W , i.e. {x ∈ X : µ(B(x, r)) >
0 for any r > 0} ⊂ W , where B(x, r) denotes the ball in X with center at x and radius r. For
ϕ ∈ Bb(X) and µ ∈ M1 we will use the notation 〈ϕ, µ〉 =

∫
X ϕ(x)µ(dx). Recall that the total

variation norm of a finite signed measure µ ∈ M1 −M1 is given by ‖µ‖TV = µ+(X) + µ−(X),
where µ = µ+ − µ− is the Jordan decomposition of µ.

We say that µ∗ ∈ M1 is invariant for (Pt)t≥0 if 〈Ptψ, µ∗〉 = 〈ψ, µ∗〉 for every ψ ∈ Bb(X)
and t ≥ 0. Alternatively, we can say that P ∗t µ∗ = µ∗ for all t ≥ 0, where (P ∗t )t≥0 denotes the
semigroup dual to (Pt)t≥0, i.e. for a given Borel measure µ, Borel subset A of X , and t ≥ 0 we set

P ∗t µ(A) := 〈Pt1A, µ〉.
A semigroup (Pt)t≥0 is said to be asymptotically stable if there exists an invariant measure

µ∗ ∈ M1 such that P ∗t µ converges weakly to µ∗ as t → +∞ for every µ ∈ M1. Obviously µ∗ is
unique.
Definition 2.1. We say that a semigroup (Pt)t≥0 has the e–property if the family of functions
(Ptψ)t≥0 is equicontinuous at every point x of X for any bounded and Lipschitz function ψ, i.e.

∀ψ ∈ Lb(X), x ∈ X, ε > 0 ∃ δ > 0 ∀ z ∈ B(x, δ), t ≥ 0 : |Ptψ(x)− Ptψ(z)| < ε.

Remark. One can show (see [13]) that to obtain the e–property in the case when X is a Hilbert
space, it is enough to verify the above condition for every function with bounded Fréchet derivative.
Definition 2.2. A semigroup (Pt)t≥0 is called averagely bounded if for any ε > 0 and bounded set
A ⊂ X there is a bounded Borel set B ⊂ X such that

lim sup
T→∞

1
T

∫ T

0
P ∗s µ(B)ds > 1− ε for µ ∈MA

1 .

Definition 2.3. A semigroup (Pt)t≥0 is concentrating at z if for any ε > 0 and bounded set A ⊂ X
there exists α > 0 such that for any two measures µ1, µ2 ∈MA

1 holds

P ∗t µi(B(z, ε)) ≥ α for i = 1, 2 and some t > 0.
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In [2] we formulated and proved the following theorems devoted to stability of Markov semi-
groups with the Feller property. Generally speaking the theorems allege that relevant concentrating
conditions imply existence of an invariant measure and its stability. They used the so-called lower
bound technique developed by A. Lasota and J. Yorke in [16].
Theorem 2.4. Let (Pt)t≥0 be averagely bounded and concentrating at some z ∈ X . If (Pt)t≥0
satisfies the e–property, then for any ϕ ∈ Lb(X) and µ1, µ2 ∈M1 we have

(2.1) lim
t→∞
|〈ϕ, P ∗t µ1〉 − 〈ϕ, P ∗t µ2〉| = 0.

Theorem 2.5. Assume that there exists z ∈ X such that for any ε > 0

(2.2) lim sup
T→∞

sup
µ∈M1

1
T

∫ T

0
P ∗s µ(B(z, ε))ds > 0.

If (Pt)t≥0 satisfies the e–property, then it admits an invariant measure.
Theorem 2.6. Let (Pt)t≥0 be averagely bounded and concentrating at some z ∈ X . If (Pt)t≥0
satisfies the e–property, then it is asymptotically stable.

3. THE MODELS

3.1. GOY and Sabra shell models and functional setting. Let u = (u−1, u0, u1, . . .) be an
infinite sequence of complex valued functions on [0,∞) satisfying the following equations for
n = 1, 2, . . .
(3.1) dun(t) + νk2

nνn(t)dt+ [B(u, u)]ndt = σndwn
with the initial conditions

u−1(t) = u0(t) = 0 and un(0) = ξn.

Here kn = k02n, k0 > 1 and ν > 0. Moreover (wn(t))n≥1 denotes a sequence of independent
Brownian motions on some probability space (Ω,F ,P). It is assumed that σn ∈ C and there is
n0 ∈ N such that σn = 0 for n ≥ n0. Further B is a bilinear operator which will be defined later
on.

LetH be the set of all sequences u = (u1, u2, . . .) of complex numbers such that
∑
n |un|2 <∞.

We consider H as a real Hilbert space endowed with the inner product (·, ·) and the norm | · | of
the form

(3.2) (u, v) = Re
∑
n≥1

unv
∗
n, |u|2 =

∑
n≥1
|un|2,

where v∗n denotes the complex conjugate of vn. The spaceH is separable. LetA : D(A) ⊂ H → H
be the non-bounded linear operator defined by

(Au)n = k2
nun, n = 1, 2, . . . , D(A) =

{
u ∈ H :

∑
n≥1

k4
n|un|2 <∞

}
.

The operator A is clearly self-adjoint, strictly positive definite since (Au, u) ≥ k2
0|u|2 for u ∈

D(A). For any α > 0, set

Hα = D(Aα) = {u ∈ H :
∑
n≥1

k4α
n |un|2 < +∞}, ‖u‖2

α =
∑
n≥1

k4α
n |un|2 for u ∈ Hα.
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ObviouslyH0 = H . Define

V := D(A 1
2 ) =

{
u ∈ H :

∑
n≥1

k2
n|un|2 < +∞

}
and set

H = H 1
4
, ‖u‖H = ‖u‖ 1

4
.

Then V is a Hilbert space for the scalar product (u, v)V = Re(∑n k
2
n un v

∗
n), u, v ∈ V and the

associated norm is denoted by
‖u‖2 =

∑
n≥1

k2
n |un|2.

The adjoint of V with respect to the H scalar product is V ′ = {(un) ∈ CN : ∑n≥1 k
−2
n |un|2 <

+∞} and V ⊂ H ⊂ V ′ is a Gelfand triple. Let 〈u , v〉V ′,V = Re
(∑

n≥1 un v
∗
n

)
denote the duality

between u ∈ V ′ and v ∈ V .
Set u−1 = u0 = 0, let a, b be real numbers and let B : H × V → H (or B : V × H → H)

denote the bilinear operator defined by

[B(u, v)]n = i
(
akn+1u

∗
n+1v

∗
n+2 + bknu

∗
n−1v

∗
n+1 − akn−1u

∗
n−1v

∗
n−2 − bkn−1u

∗
n−2v

∗
n−1

)
for n = 1, 2, . . . in the GOY shell model (see, e.g. [20]) or

[B(u, v)]n = i
(
akn+1u

∗
n+1 vn+2 + bknu

∗
n−1vn+1 + akn−1un−1vn−2 + bkn−1un−2vn−1

)
,

in the Sabra shell model introduced in [17].
Obviously, there exists C > 0 such that

(3.3) |B(u, v)| ≤ C‖u‖|v| for u ∈ V and v ∈ H.

Note that B can be extended as a bilinear operator from H × H to V ′ and that there exists
a constant C > 0 such that given u, v ∈ H and w ∈ V we have

(3.4) |〈B(u, v) , w〉V ′,V |+ |
(
B(u,w) , v

)
|+ |

(
B(w, u) , v

)
| ≤ C |u| |v| ‖w‖.

An easy computation proves that for u, v ∈ H and w ∈ V (resp. v, w ∈ H and u ∈ V ),

〈B(u, v) , w〉V ′,V = −
(
B(u,w) , v

)
(resp.

(
B(u, v) , w

)
= −

(
B(u,w) , v

)
).

Hence (B(v, u), u) = 0 for u ∈ H and v ∈ V . Furthermore,B : V ×V → V andB : H×H → H;
indeed, for u, v ∈ V (resp. u, v ∈ H) we have

‖B(u, v)‖2 =
∑
n≥1

k2
n |B(u, v)n|2 ≤ C ‖u‖2 sup

n
k2
n|vn|2 ≤ C ‖u‖2 ‖v‖2,

|B(u, v)| ≤ C ‖u‖H ‖v‖H.

3.2. Well-posedness. Consider the abstract equation on H of the form

(3.5) du(t) = [−νAu(t) +B(u(t), u(t))] dt+QdW (t), t ≥ 0

with the initial condition u(0) = ξ ∈ H , where Q = (qi,j)i,j∈N is some matrix with Tr(QQ∗) <∞
and W (t) = (wn(t))n≥1 is a cylindrical Wiener noise on some filtered space (Ω,F , (Ft)t≥0,P).
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Definition 3.1. A stochastic process u(t, ω) is a generalized solution in [0, T ] of the system (3.5)
if

u(·, ω) ∈ C([0, T ];H) ∩ L2(0, T ;H)
for P-a.e. ω ∈ Ω, u is progressively measurable in these topologies and equation (3.5) is satisfied
in the integral sense

(u(t), ϕ) +
∫ t

0
ν(u(s), Aϕ)ds+

∫ t

0
(B (u(s), ϕ) , u(s)) ds

= (ξ, ϕ) + (QW (t), ϕ)

for all t ∈ [0, T ] and ϕ ∈ D(A).
Theorem 3.2. Let us assume that the initial condition ξ is an F0-random variable with values in
H . Then there exists a unique solution (u(t))t≥0 to equation (3.5). Moreover, if E|ξ|2 < +∞, then

(3.6) E|u(t)|2 +
∫ t

0
2νE‖u(s)‖2ds = E|ξ|2 + Tr(QQ∗)t

for any t ≥ 0.

Proof. We will prove well–posedness using a pathwise argument (for similar results see [4] and
the references therein). Let us introduce the Ornstein-Uhlenbeck process solution of

(3.7)
{

dz(t) + νAz(t)dt = QdW,
z(0) = 0.

The above equation has a unique progressively measurable solution such that P-a.s.

z ∈ C([0, T ];H)
(for more details see [7]). Set v = u− z. Then for P-a.e. ω ∈ Ω

{
d
dtv(t) + νAv(t)−B(v(t) + z(t), v(t) + z(t)) = 0,
v(0) = ξ,

(3.8)

is a deterministic system. The existence and uniqueness of global weak solutions v follow from the
Galerkin approximation procedure and then passing to the limit using the appropriate compactness
theorems. We omit the details which can be found in [4] and the references therein. Instead, we
present the formal computations which lead to the basic a priori estimates, this is in order to stress
the role played by z. Using equation (3.8) and various properties of the nonlinear operator B, we
have

1
2

d
dt |v(t)|2 + ν‖v(t)‖2 ≤ |(B(v(t) + z(t), z(t)), v(t))|

≤ C‖v(t)‖|v(t) + z(t)||z(t)|
≤ ν

2‖v(t)‖2 + C(ν)
(
|v(t)|2|z(t)|2 + |z(t)|4

)
.

Using Gronwall’s Lemma and the fact that ‖z‖C([0,T ];H) ≤ C(ω), we have

sup
0≤t≤T

|v(t)|2 ≤ C(|ξ|, T, C(ω)).
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Again, using the above inequality in the previous estimate, we obtain that∫ T

0
‖v(s)‖2ds ≤ C(|ξ|, T, C(ω)).

Then, by classical arguments, see [21], v ∈ C([0, T ];H) ∩ L2(0, T ; D(A1/2)). Therefore u =
v + z ∈ C([0, T ];H) ∩ L2(0, T ; D(A1/4)) P-a.s.

To finish the proof observe that condition (3.6) follows from Itô’s formula. �

The uniqueness of solutions is established in the following theorem.

Theorem 3.3. Let
(
u(1)(t)

)
t≥0

,
(
u(2)(t)

)
t≥0

, be two continuous adapted solutions of (3.5) in H ,

with the initial conditions u(1)
0 and u(2)

0 as above. Then there is a constant C(ν) > 0, depending
only on ν, such that P-a.s.

∣∣∣u1(t)− u2(t)
∣∣∣2 ≤ eC(ν)

∫ t

0 |u1(s)|2ds ∣∣∣u1
0 − u2

0

∣∣∣2 t ≥ 0.

Proof. Let us put u(t) = u1(t)− u2(t). Then u is the solution of the following equation

du+ νAudt−
(
B(u1, u1)−B(u2, u2)

)
dt = 0.

Using again the properties of operator B, we obtain

d
dt |u|

2 + ν‖u‖2 ≤ |(B(u, u1), u)|

≤ ν

2‖u‖
2 + C(ν)|u|2|u1|2.

Hence, by the Gronwall lemma, we obtain that

|u(t)|2 ≤ |u(0)|2eC(ν)
(∫ T

0 |u
1(s)|2ds

)
,

which finishes the proof. �

4. STABILITY OF THE MODEL

Let a diagonal matrix Q = (qi,j)i,j∈N be such that there is n0 ∈ N and qn,n = 0 for n ≥ n0.
Consider the equation on H of the form

(4.1) du(t) = [−νAu(t) +B(u(t), u(t))]dt+QdW (t) t ≥ 0,

where (W (t))t≥0 is a certain cylindrical Wiener process on a filtered space (Ω,F , (Ft)t≥0,P).

By Theorem 3.2 for every x ∈ H there is a unique continuous solution (ux(t))t≥0 in H , hence
the transition semigroup is well defined. From Theorem 3.3 we obtain that the solution satisfies
the Feller property, i.e. for any t ≥ 0 if xn → x in H , then Ef(uxn(t)) → Ef(ux(t)) for any
f ∈ Cb(H). Set

Ptf(x) = Ef(ux(t)) for any f ∈ Cb(H).
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Obviously (Pt)t≥0 is stochastically continuous. First note thatDPtf(x)[v], the value of the Frechet
derivative DPtf(x) at v ∈ H , is equal to E {Df(ux(t))[U(t)]}, where U(t) := ∂ux(t)[v] and

∂ux(t)[v] := lim
η↓0

1
η

(
ux+ηv(t)− ux(t)

)
and the limit is in L2(Ω,F ,P;H) (see [13] also [12]). The process U = (U(t))t≥0 satisfies the
linear evolution equation

(4.2)
dU(t)

dt = −νAU(t) +B(ux(t), U(t)) +B(U(t), ux(t)),

U(0) = v.

Suppose that X is a certain Hilbert space and Φ: H → X a Borel measurable function. Given
an (Ft)t≥0-adapted process g : [0,∞) × Ω → H satisfying E

∫ t
0 |g(s)|2ds < ∞ for each t ≥ 0

we denote by DgΦ(ux(t)) the Malliavin derivative of Φ(ux(t)) in the direction of g; that is the
L2(Ω,F ,P;X )-limit, if exists, of

DgΦ(ux(t)) := lim
η↓0

1
η

[
Φ(uxηg(t))− Φ(ux(t))

]
,

where uxg(t), t ≥ 0, solves the equation

duxg(t) =
[
−νAuxg(t) +B(uxg(t), uxg(t))

]
dt+Q (dW (t) + g(t)dt) , uxg(0) = x.

In particular, one can easily show that when X = H and Φ = I , where I is the identity operator,
the Malliavin derivative of ux(t) exists and the process D(t) := Dgux(t), t ≥ 0, solves the linear
equation

(4.3)

dD
dt (t) = −νAD(t) +B(ux(t), D(t)) +B(D(t), ux(t)) +Qg(t),

D(0) = 0.

Directly from the definition of the Malliavin derivative we conclude the chain rule: suppose that
Φ ∈ C1

b (H;X ) then
DgΦ(ux(t)) = DΦ(ux(t))[D(t)].

(Here C1
b (H;X ) denotes the space of all bounded continuous functions Φ : H → X with con-

tinuous and bounded first derivative with the natural norm. In the case when X = R we simply
write C1

b (H).) In addition, the integration by parts formula holds, see Lemma 1.2.1, p. 25 of [18].
Indeed, suppose that Φ ∈ C1

b (H). Then

(4.4) E[DgΦ(ux(t))] = E
[
Φ(ux(t))

∫ t

0
(g(s), dW (s))

]
.

Lemma 4.1. Let η ∈ (0, ν/(2 max q2
i,i)]. Then we have

E(exp(η|ux(t)|2 + ην
∫ t

0
‖ux(s)‖2ds)) ≤ 2 exp(η(TrQ2)t+ η|x|2).
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Proof. Fix η ∈ (0, ν/(2 max q2
i,i)]. Let M(t) = η

∫ t
0(ux(s), QdW (s)) and let N(t) = M(t) −

ην
∫ t

0 ‖ux(s)‖2ds. Set α = ν/max q2
i,i. Then we have ν‖ux(s)‖2 ≥ α|Qux(s)|2. Now observe

that N(t) ≤M(t)− (α/η)〈M〉(t), where 〈M〉(t) denotes the quadratic variation of the continous
L2–martingale M with the filtration generated by the noise. Hence by a standard variation of the
Kolmogorov–Doob martingale inequality (see [19]) we have

P(N(t) ≥ K) ≤ exp(−αK/η)
and consequently we obtain

P(expN(t) ≥ expK) ≤ exp(−αK/η) ≤ exp(−2K)
for any K > 0. An easy observation that if some positive random variable, say X , satisfies the
condition P(X ≥ C) ≤ C−2 for every C > 0, then EX ≤ 2 gives

E(exp(η|ux(t)|2 + ην
∫ t

0
‖ux(s)‖2ds− η(TrQ2)t− η|x|2)) ≤ 2,

by Itô’s formula. This completes the proof. �

The crucial role in our consideration is played by the following lemma. The idea of its proof is
taken from [12].
Lemma 4.2. Let (Pt)t≥0 correspond to problem (4.1). If Q satisfies the condition:

(4.5) q1,1, . . . , qN∗,N∗ 6= 0 for N∗ > log2(2C2 max q2
i,i/ν

3 + TrQ2/(2 max q2
i,i))/2,

where C > 0 is given by (3.3), then for any f ∈ C1
b (H) and R > 0 there exists a constant C0 > 0

such that

(4.6) sup
t≥0

sup
|x|≤R

sup
|v|≤1
|DPtf(x)[v]| ≤ C0‖f‖C1

b
(H).

Proof. Fix N∗ > log2(2C2 max q2
i,i/ν

3 + TrQ2/(2 max q2
i,i))/2. The proof will be split into three

steps.
Step I: Let g : [0,∞)×Ω→ H be a measurable function such that E

∫ t
0 |g(s)|2ds <∞ for any

t ≥ 0. Let ωt(x) := Dgux(t) and ρt(v, x) := ∂ux(t)[v]−Dgux(t). Then,

DPtf(x)[v] = E {Df(ux(t))[ωt(x)]}+ E {Df(ux(t))[ρt(v, x)]}
= E {Dgf(ux(t))}+ E {Df(ux(t))[ρt(v, x)]}

(4.4)= E
{
f(ux(t))

∫ t

0
(g(s), dW (s))

}
+ E {Df(ux(t))[ρt(v, x)]} .

We have ∣∣∣∣E {
f(ux(t))

∫ t

0
(g(s), dW (s))

}∣∣∣∣ ≤ ‖f‖L∞ (E ∫ t

0
|g(s)|2ds

)1/2

and
|E {Df(ux(t))[ρt(v, x)]}| ≤ ‖f‖C1

b
(H)E |ρt(v, x)| ≤ ‖f‖C1

b
(H)(E |ρt(v, x)|2)1/2.

Step II: Let ξ(t) = (ξ1(t), ξ2(t), . . .) : [0,∞)→ H be a solution to the following system:
dξi(t)

dt = − ξi(t)
2
√∑N∗

i=1 ξ
2
i (t)

for i = 1, . . . , N∗

dξi(t)
dt = −νk2

i ξi(t) + [B(ux(t), ξ(t)) +B(ξ(t), ux(t))]i for i ≥ N∗ + 1.
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with ξ(0) = v. We assume also that ξi(t)/2
√∑N∗

i=1 ξ
2
i (t) = 0 if

√∑N∗
i=1 ξ

2
i (t) = 0 (see [12]).

Observe that ξ1(t), ξ2(t), . . . , ξN∗(t) = 0 for t ≥ 2.
Now we choose g : [0,+∞)× Ω→ H to be given by the formulae:

gi(t) = 1
qi,i

−νk2
i ξi(t) + [B(ux(t), ξ(t)) +B(ξ(t), ux(t))]i −

ξi(t)
2
√∑N∗

i=1 ξ
2
i (t)


for i = 1, . . . , N∗ and gi(t) = 0 for i ≥ N∗ + 1.

It is easy to see that ρt = ξ(t) for any t ≥ 0. Indeed, observe that

dξ(t)
dt +Qg(t) = −νAξ(t) +B(ux(t), ξ(t)) +B(ξ(t), ux(t))

and
ξ(0) = v.

On the other hand, subtracting equation (4.2) from (4.3) we obtain the equation for ρt. Since ρt and
ξ(t) solve the same equation with the same initial condition ρ0 = ξ(0) = v, we obtain ρt = ξ(t)
for t ≥ 0.

Step III: To show (4.6) it is enough to prove that

sup
|x|≤R

sup
|v|≤1

E
∫ ∞

0
|g(s)|2ds <∞

and
sup
t≥0

sup
|x|≤R

sup
|v|≤1

E|ξ(t)|2 <∞.

We know that
∑N∗
i=1 |ξi(t)|2 ≤ |v|2 ≤ 1 for t ≥ 0. In particular ξi(t) = 0 for t ≥ 2 and

i = 1, . . . , N∗. Let ζ(t) = (ξN∗+1(t), ξN∗+2(t), . . .). It is easy to see that ζ satisfies the inequality

(4.7)
d|ζ(t)|2

dt ≤ −νk2
N∗|ζ(t)|2 + 2C‖ux(t)‖|ζ(t)|2 + 2C̃‖ux(t)‖|ζ(t)| for t ≥ 0,

where C̃ is some positive constant dependent only on C. Choose ε > 0 and γ ∈ (0, 1) such that

−νk2
N∗ + ε+ 2C2 max q2

i,i/ν
2 + ν TrQ2/(2γmax q2

i,i) < 0.
From equation (4.7) we derive

d|ζ(t)|2
dt ≤ (−νk2

N∗ + 2C‖ux(t)‖+ ε)|ζ(t)|2 + C(ε)‖ux(t)‖2

and using Gronwall’s lemma we obtain

|ζ(t)|2 ≤
(
|v|2 + C(ε)

∫ t

0
‖ux(s)‖2ds

)
e(−νk2

N∗+ε)t+2C
∫ t

0 ‖u
x(s)‖ds

≤ e(−νk2
N∗+ε)t

[
1 + C(ε)

∫ t

0
‖ux(s)‖2ds

]
e2C

∫ t

0 ‖u
x(s)‖ds.

Hence we obtain that there exist constant A > 0 (independent of t ≥ 0, v ∈ B(0, 1) and x ∈
B(0, R)) such that

|ζ(t)|2 ≤ A exp(γ(−νk2
N∗ + ε+ 2C2 max q2

i,i/ν
2)t) exp

(
ν/(2 max q2

i,i)
∫ t

0
‖ux(s)‖2ds

)
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for all t ≥ 0, by the fact that −νk2
N∗ + ε+ 2C2 max q2

i,i/ν
2 < 0. Thus

sup
|x|≤R,|v|≤1,t≥0

E|ζ(t)|2

≤ A exp(γ(−νk2
N∗ + ε+ 2C2 max q2

i,i/ν
2)t)E

(
exp

(
ν/(2 max q2

i,i)
∫ t

0
‖ux(s)‖2ds

))
.

Using Lemma 4.1 we obtain

sup
t≥0,|x|≤R,|v|≤1

E|ζ(t)|2 ≤ Ã exp(γ(−νk2
N∗ + ε+ 2C2 max q2

i,i/ν
2 + ν/(2γmax q2

i,i) TrQ2)t)

for some Ã > 0. On the other hand, by the definition of N∗, kn and the choice of ε, γ we have

−νk2
N∗ + ε+ 2C2 max q2

i,i/ν
2 + ν/(2γmax q2

i,i) TrQ2 < 0.
Now we must evaluate

E
∫ t

0
|g(s)|2ds ≤ 2 sup

0≤s≤2
E|g(s)|2 + E

∫ t

2
|g(s)|2ds.

The first term on the right side of the above inequality is bounded uniformly in |x| ≤ R and
|v| ≤ 1. Further, for s ≥ 2 we have

|g(s)| ≤ C̃‖ux(s)‖|ζ(s)|
and

E
∫ t

2
|g(s)|2ds ≤ C̃2E

∫ ∞
2
‖ux(s)‖2|ζ(s)|2ds

≤ Ĉ E[
∫ ∞

2
‖ux(s)‖2 exp(γ(−νk2

N∗ + ε+ 2C2 max q2
i,i/ν

2)s)

× exp(ν/(2 max q2
i,i)
∫ s

0
‖ux(r)‖2dr)ds]

≤ ĈE[
∫ ∞

2
exp(γ(−νk2

N∗ + ε+ 2C2 max q2
i,i/ν

2)s)

× exp(ν/(2 max q2
i,i)|ux(s)|2 + ν/(2 max q2

i,i)
∫ s

0
‖ux(r)‖2dr)ds]

≤ Ĉ
∫ ∞

2
[exp(γ(−νk2

N∗ + ε+ 2C2 max q2
i,i/ν

2)s)

× E exp(ν/(2 max q2
i,i)|ux(s)|2 + ν/(2 max q2

i,i)
∫ s

0
‖ux(r)‖2dr)]ds

≤ C ′
∫ ∞

2
exp(γ(−νk2

N∗ + ε+ 2C2 max q2
i,i/ν

2 + ν TrQ2/(2γmax q2
i,i))s)ds,

for any x ∈ B(0, R), where the constant C ′ depends only on R. Using again the assumption on
N∗ we obtain

sup
|x|≤R,|v|≤1

E
∫ ∞

2
|g(s)|2ds <∞.

This completes the proof. �

Lemma 4.3. (Average boundedness) Let (Pt)t≥0 correspond to problem (3.5). Then (Pt)t≥0 is
averagely bounded.
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Proof. Fix an ε > 0 and let r > 0 be given. If x ∈ B(0, r), then
1
T

∫ T

0
P ∗s δx(H \B(0, R))ds = 1

T

∫ T

0
P(|ux(s)| > R)ds ≤ 1

T

∫ T

0
P(‖ux(s)‖ > R)ds

= 1
T

∫ T

0
P(‖ux(s)‖2 > R2)ds ≤ 1

T

∫ T

0

E‖ux(s)‖2

R2 ds

= 1
νR2

1
T

∫ T

0
νE‖ux(s)‖2ds ≤ 1

νR2 (TrQ2 + |x|2/T ) ≤ 1
νR2 (TrQ2 + r2/T )

for arbitrary R > 0, by (3.6). Hence there is R0 > 0 such that

lim inf
T→+∞

1
T

∫ T

0
P ∗s δx(B(0, R0))ds > 1− ε.

On the other hand, by Fatou’s lemma we have

lim inf
T→+∞

1
T

∫ T

0
P ∗s µ(B(0, R0))ds ≥

∫
H

(
lim inf
T→+∞

1
T

∫ T

0
P ∗s δx(B(0, R0))ds

)
µ(dx)

≥
∫
H

(1− ε)µ(dx) = 1− ε

for any µ ∈MB(0,r)
1 . The proof is complete. �

Lemma 4.4. (Concentrating at 0) Let (Pt)t≥0 correspond to problem (3.5). Then (Pt)t≥0 is con-
centrating at 0.

Proof. Consider first the deterministic equation

dvx(t) = [−νAvx(t) +B(vx(t), vx(t))]dt
with the initial condition vx(0) = x. Then

1
2

d|vx(t)|2
dt ≤ −νk0|vx(t)|2

and consequently
|vx(t)|2 → 0 as t→ +∞

uniformly on bounded sets. Further, fix ε > 0 and r > 0. Let t0 > 0 be such that vx(t0) ∈
B(0, ε/2) for all x ∈ B(0, r). We may show (see Theorem 8 in [4]) that the process corresponding
to the considered model is stochastically stable (see also [13]), i.e. there exists η > 0 and the set
Fη = {ω ∈ Ω : sup0≤t≤t0 |QW (t)(ω)| ≤ η} such that

|ux(t0)(ω)− vx(t0)| ≤ ε/2 for any ω ∈ Fη.
Since the process is degenerate, we have α := P(Fη) > 0. Consequently, we obtain

P ∗t0δx(B(0, ε)) ≥ P({ω ∈ Ω : ux(t0)(ω) ∈ B(0, ε)}) ≥ P(Fη) = α

for arbitrary x ∈ B(0, r). Since

P ∗t0µ(B(0, ε)) =
∫
H
P ∗t0δx(B(0, ε))µ(dx),

we obtain P ∗t0µ(B(0, ε)) ≥ α for any µ ∈ MB(0,r)
1 . But ε > 0 and r > 0 were arbitrary and hence

the concentrating property follows. �

We may formulate the main theorem of this part of our paper.
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Theorem 4.5. The semigroup (Pt)t≥0 corresponding to problem (3.5) with Q satisfying condition
(4.5) is asymptotically stable. In particular, it admits a unique invariant measure.

Proof. From Lemma 4.2 it follows that the semigroup (Pt)t≥0 satisfies the e–property. It is also
averagely bounded and concentrating at 0, by Lemmas 4.3 and 4.4. Application of Theorem 2.6
finishes the proof. �

Remark: Observe that condition (4.5) implies that the system with not too much noise is stable
even when the noise is added to the first mode only.
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